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Abstract

A point x j e belonging to a convex cone K with vertex e

in a locally convex linear topological space X is called a

quasi-interior point (QI-point) of K if the linear extension

of the set K n (x - K) is dense in X. The set Kq of all

quasi-interior points of K is called the quasi-interior of K.

Many properties of QI-points and of cones with non-void quasi-

interiors are determined. Among the results established are

the following.

If K has a non-void interior K then Kq = K0 . Examples

are given to show that a cone with void interior may have a

non-void quasi-interior.

Let K and K' be cones with non-void quasi-interiors Kq

and K'q such that Kq n K'q = 0. If H is a hyperplane

separating K and K' then H strictly separates Kq and K'

Each QI-point of K is a non-support point of K.

If Kq / 0 and C is a convex set with non-void-interior 
C0

such that C° 0n K = P then there exists a hyperplane H

separating C and K and strictly separating C and Kq.

If K n (-K) = (el, Kq X P and x E K, x g Kq, x e there

exists a subset H of X maximal with respect to the properties:

(i) H is a proper linear subspace of X, (ii) x0 E H, (iii)

H n K =0. Furthermore, if S1 =H + Kq and S2 = H - Kq we

have H n SI = H n s 2 = S 1 S = 2 ; H U SI U S2 = X;

K c H U S1 ; Kq c SI; and x1 E S1 and y E H imply an x2 E S 2

such that y = 1-(xl + x2). It is conjectured that H is

necessarily either a hyperplane or is dense in X.
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1. Introduction.

In May 1963 Professor R. E. Fullerton died at the age of

47 as the result of injuries received in an automobile

accident while on a lecture tour of Europe. A mathematical

inventory of his effects produced the beginnings of several

papers. Although the notes found were, for the most part,

incomplete and fragmentary, it was decided that an attempt

should be made to complete and publish the work so tragically

interrupted. The writer, being a former student of Fullerton

and having maintained close professional contact with him,

was selected to make this attempt. The paper which will

result from this report will be the first of several to be

written in Fullerton's specialty, namely, the application of

geometrical techniques to Functional Analysis.

The notion of a quasi-interior point of a cone in a

linear topological space was devised by Fullerton in a

research report [4]. His purpose in introducing this concept

and discussing several properties possessed by cones with

quasi-interior points was to lay a foundation upon which a

realistic generalization of positive operator theory could be

based. Of particular interest were the results of Krein and

Rutman [8] concerning the spectral theory of linear operators

leaving invariant a cone in a Banach space. These results

required that the positive cone have a non-void interior and

therefore were not applicable in many interesting function
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spaces. (For example, the positive cone in an infinite

dimensional L-space has no interior points. c.f. [2].) An

actual application of the quasi-interior point concept to

extending some of the Krein and Rutman results was subse-

quently carried out by H. Schaefer [9] who arrived at the

technique independently.

The research interest of this writer has, in the past

few years, been centered in the theory of infinite programming

in linear spaces. His attention was recently once again

focused upon the quasi-interior point concept when, in the

course of attempting to extend certain results in the use of

Lagrangian saddle-points for non-linear programming, a need

was found for results concerning separation and support

properties of cones with void interiors. The principal

results in this report involve such properties of cones with

non-void quasi-interiors but having no interior points.

Fullerton's original investigations concerning quasi-interior

points are included in this report for the sake of complete-

ness and because the report [4] in which they first appeared

was never published and is now no longer accessible. A few

of these basic results can be found also in [10].

The writer feels obliged to make a comment concerning

the role of technical reports in general and this report in

particular. He believes that a technical report serves at

least two very useful purposes. The first is in its role as

a pre-print of a future publication, making available to the
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interested reader material which will ordinarily not appear

in published form for many months and yet, in a format to

which reference can be made by workers wishing to make use

of the results. The second is the possibility of including

many details and insights which, of necessity, must be

omitted from the published version, yet which can be extremely

helpful to the reader.

2. Basic definitions and notation.

Included in this section are the definitions and nota-

tion which will be used throughout the remainder of the

report without further reference.

The underlying space in all of the discussions will be a

locally convex real linear topological space, always denoted

by X. That is, X is a real linear space with elements

x, y, z, ... and scalars a, A, Y, ... belonging to the real

number system R, together with a topology in which the opera-

tions of addition (+) and scalar multiplication (.) are

continuous from X x X to X and R x X to X, respectively.

Furthermore, this topology is such that the family of convex

neighborhoods of the zero element (denoted by e to distinguish

it from the scalar 0 and the empty set 0) forms a local base -

i.e. each neighborhood of a contains a convex neighborhood of

e. R itself is always assumed to possess the usual topology.

It will be clear to the reader that many of the results

to follow will be valid in linear spaces with considerably
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weaker topological properties. Indeed, many of the results,

being purely algebraic, require no topology at all. The

reason for requiring that X be a locally convex space is one

of economy and the proofs themselves will indicate to what

extent the topological conditions can be relaxed.

The line segment joining points x and y in X is denoted

by [x, y] and defined by [x, y] = (z : z = ax + (l - a)y,

0 r a r 13. We shall also use the notations (x, y) =

(z z = ax + (l - a)y, U < a < 1), [x, y) (z : z =ax +

(1 a)y, 0 < a : l, and (x, y] = (z : z = ax + (1 - a)y,

0 s a < 13. The line in X determined by points x and y is

denoted by L(y, x) and defined by L(y, x) = (z : z =

ax + (1 - a)y, a E R). The ray, or half-line from y through

x is R(y, x) = [z : z = ax + (l - a)y, a k 01.

A set C in X is convex if for any pair of elements

x, y in C it follows that [x, y] c C. The symbol K will

always be used to denote a convex cone with vertex e in X.

That is, K is a subset of X such that K + K c K and aK c K

for all a ' 0. (By A + B we mean (x + y : x E A, y E BI and

by aA we mean [ax : x E Al.)

For a subset A of X, [A] denotes the linear extension

of A and is the set of all finite linear combinations of

elements in A. As is well known, [A] is the smallest linear

subspace containing A. It is easily seen that if K is a con-

vex cone in X then the statements K - K = X and [K] = X are

equivalent. A subset A will be said to generate X if [A] is
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dense in X -i.e. if X is the closure of [A].

A variety is a translate of a linear subspace. By a

hyperplane we mean a closed maximal proper linear subspace

of X. That is, H is a hyperplane if H is a linear subspace

of X, H is properly contained in no proper linear subspace of

X, and H is closed. it is well known that H is a hyperplane

in X if and only if, for some x E X, x g H, X = H + Rx.

A and A will, as is customary, denote respectively, the

interior and closure of the set A.

The notation Ar,B is used to denote (x : x E A, x g B)

and is to be distinguished from the notation A - B

(x - y : x E A, y E B].

3. Quasi-interior points of cones. Basic properties.

3.1 Definition. A point x E K, x 9 is called a

quasi-interior point (QI-point) of K if the set Px = K n (x-K)

generates X. The set of all QI-points of K will be denoted

by Kq and is called the quasi-interior of K. If x E K and

x g Kq, x is called a quasi-boundary point of K. The set of

all quasi-boundary points of K is called the quasi-boundary

of K and is denoted by Kb. That is Kb = K Kq'

3.2 Lemma. (a) X > 0 => P x XPx

(b) u E Px = > P u P Px'

(c) y E x + K => Px c Py'

Proof: Suppose y E Px and X > 0. Then y E K hence

Xy E K. Also y E x - K so y = x - v where v E K hence
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Xy = Xx - Xv E Xx - K. Thus Xy E PxX and XPx c P~x"

Conversely, suppose y E P X X > 0. Then y E K and

y E Xx -K so y = Xx -w with w E K. It follows that

y = X(x - w) hence = x - w E x - K and I- E P so

y EXP x. Thus PXx c %Px and (a) has been proved. If u E Px
then u E K and u =x - vI with v1 E K. Suppose w E P u Then

w E K and w = u -v 2 with v2 E K. Consequently w =

(x - vl) - v2 = x - (v1 + v2 ) E x - K so P. c Px and (b)

holds. Finally, to prove (c) suppose y E x + K. Then

y = x + u where u E K. If w E Px then w E K and w = x - v

where v E K. But then y = x + u = (w + v) + u - w + (v + u)

so w = y - (v + u) E K n (y - K) = Py. Thus Px a Py. The

lemma has been proved.

3.3 Lemma. If C is a non-trivial convex set containing

8 then each element of [C] lies on a line determined by two

points of C.
n

Proof: Suppose y E [C]. Then y = i a xi where for

i = 1, 2, ..., n, xi E C and ai E R. If all the ai are

zero then y - e E C and for any x E C, x 4 e, y lies on the

line L(o, x). Assume therefore that ai Y 0 for i - 1, 2,,...., n.

If the a are all positive, let X . zn 0i > 0 and let

Yl= ,nl =i axi Since C is convex, yl E C and y - Xyl lies

on the line L(e, yl). If all the a are negative, let X -

E±l (-hi) > 0 and y1 = X i.1 (-ai) xi. Then y1 E C and

Y = -Xyl again lies on L(e, yl). Finally assume that some
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of the a i are positive and some are negative and separate

the positive and negative coefficients. That is, write

y = i x - Er_l (-a k) Xi where a. > 0 for

2, ... , m and ai < 0 for k = 1, 2, ... , r with

n = m + r. Let Xi E L1 a >0 and X r=l - > 0.1~~~ r~

Setting y = =mx and (-diy x we
S 1 1 j .2 2 k k

have y1 E C, Y2 E C and y = XlYl - X2 y2 . If X, = 1 then,

since X2 > O + g 1 so, setting y - 1 + Y we have

Yli+ 2  + 1 + X2 e E C and y = (i + X2 )y{ - X2 y 2 whence

y lies on the line L(y{, y2 ) determined by the points

yl' Y2 belonging to C. If / 1 let y = X X .12 and

y = I+ XYl. Then y = Xly I + (l - Xl)y = (1 + X2 )y! - X2y2.

2 +12 the 1 X +X 2 and 1 - 1 : %2 > 0 so

l -1 and y = l2 E C. Then y = Xly I + (1 - Xl)y

lies on the line L(Yl, y ) determined by two points of C.

If 1 + l 1 then y' - 1 Yl E C so y = (i + X2 )y{ - X2 y2

lies on L(Yi, Y2 ) determined by two points of C. In every

case, therefore, the lemma's conclusion has been verified.

3.4 Lemma. If y E [P x then there exist points u and v

in Px n L(y, 1) such that x = u + v. That is, - is the mid-

point of a segment [u, v] c Px n L(y, I).

Proof: Clearly P is convex being the intersection ofx

the convex sets K and x - K. Thus, by Lemma 3.3, if y E [Pxc3
y lies on L(w, z) with w, z, E P x From the definition of Px

clearly x - w and x - z also belong to Px" Suppose first
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that y E [w, z]. Then, because Px is convex, YE P and x is
x x

the midpoint of the segment [u, v] where u = x E Px and

v = x - y E Px . Now suppose that y L [w, zJ. Then, by

interchanging w and z if necessary, y = yw + (1 - y)z for

some real scalar y < 0. By an elementary calculation,

Y(x - z) + -Y w+Y l-Y=Y( 1l& 2 ( -z)+1 - 2Yw + ( 2 y(X - w) + i 2y .
1- 2( 2Y 1 Y(X - w) +

Setting u = -1--g x z) + 1 -Y and v = 1 W- +

1 -Y we see that u and v belong to Px, y E L(u, v) and
1 - 2Y 2
is the midpoint of [u, v].

The pictorial description of the situation described in

Lemma 3.4 is: Yx/2
X -eZ W

X - W V

3.5 Definition. If M is a subset of X a point x in M

is called a directionally-interior point (DI-point), (or

internal point, radial point, core point) of M if for each

y E M, y x there is a z / x such that [x, z].c :Ex, y1 n M.

Equivalently, x is directionally-interior point of M if,

given any line L in X through x there exist points y and z

in L n M such that x E (y, z) c M. The set of all directionally
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interior points of M is called the directional-interior (also

radial kernel or core) of M and will be denoted by Md.

3.6 Corollary. [Px] X if and only if x is

directionally-interior to P x'

Proof: This follows immediately from Definition 3.5

and Lemma 3.4.

3.7 Theorem. (a) If x E K0 then [Px] = X.

(b) If K is closed, X is of the second

category and [Px = X, then x E K° .

Proof: Suppose x E K0 . Then - E K0 and 2 E (x - K)0 .

Let N' be an open set such that x E N' c K and let N" be an

open set such that 2 E N" c x - K. Then N = N' n N" is an

open set such that E N c Px It is a well known result

that if Px contains an open set, [Px ] = X. Thus, (a) is

proved. Suppose [P I = X. By Corollary 3.6, 2- is directionallyx2

interior to Px. If K is closed so is Px and trivially P x is

a convex Baire set. By a theorem of Klee [6], if X is of

the second category, the directional-interior of Px is a
xx

subset of its interior. Since f is interior to Px, clearly,
x Ko

E K

3.8 Example. The following example shows that the

category assumption in Theorem 3.7 (b) is necessary. The

details of the verification may be found in 13J.

Let S denote the real linear space whose elements are
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all real sequences with at most a finite number of non-zero

coordinates. Let x0 denote the sequence (o }i=l. The space

X is defined by the equation X = S + Rx . If x = is

any element of X define Jj x = = I %i I. Let K be the

set of all points x = in X such that, for all i, gi - 0.

Then X is a normed linear space of the first category in

itself, K is a closed convex cone in X, K0 = ' and yet

[Px o = X.

3.9 Theorem. (a) K0 c Kq

(b) If K0 /9 then Kq C K° .

Proof: If K° = trivially K0 c K . If K0 / Q and

x 0, by Theoi em j (), j ]= X so, clearly, P

generates X and x E K . Thus, (a) has been proved. To prove

(b) suppose that x is any element of Kq and y is any element

of K0 . Since y E K there is an open set Ny such that

y E Ny c K. Since x E Kq, [Px ] is dense in X and there

exists a point y' E [P ] fl N y. Let N' be an open set such

that y' E N' c Ny. By Lemma 3.4 the line L(y', 1) contains
y y

a point y" in Px such that y" E (I, y'), say y" = yy' + (1-y)L

with 0 < y < 1. If y" is a multiple of x, so is y' and hence,

since y' E K0 , so is x. If y" is not a multiple of x then

0, x and y" determine a two dimensional subspace E of X.

Consider the rays R(8, y1) = fay' : a m 0) and R(x, y") =

Ox+ (1 - ,y :51.



12

R e, y' ) ey

x

R (x, y) / x/2

The rays R(e, y') and R(x, yfl) intersect in the point z

where, since z = ay' Ax + (1 - A)y" and y" = yy' + (1 - y)4

we have ay' = px + (1 - a)(yy' + (1 - y)2) = + l-( jx +

(1 - A)yy'. Since x and y' are independent, p + (1-y)(1-A) = 0
2

and a = (1- A)y. Solving for A gives A = and a
Y+l6

Thus z = The open set Nz = y-NY, contains z and

is contained in K and, hence, z is interior to K. Also,

since R(G, y') c K and R(x, y") a x - K (to see this note

that x - R(x, y") -x - [Ax + (1 - A)y"] : A g 1) =

{(1 - A)(x + y") A : , lc K) we have z E K n (x - K) - Px.

Since P is symmetric with respect to X , x - z E 530

x - z E K and, in particular, x - z + Nz c K. The set

tf(x - z) + Nz3 is an open set contained in K and contains

(To see that this set contains I we note that z E Nz so

2 2 z 22 and 2 f2xix- Iz + 2N1 . Thus, is interior to K

and, consequently, x E K0

3.10 Corollary. If KO / then K0 = Kq.
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3.11 Corollary. If K° / o and x E Kq then P. has a

non-void interior.

3.12 Theorem. A necessary and sufficient condition

that x E Kq is that for any y E X and any open set N con-

taining y there exists a line L with L n N / X such that x is

interior to the segment L n K relative to L.

Proof: Let z be any point of X and let N z be any open

set containing z. Let y = 2z and NY = 2N z . There exists a

point y' E N such that the line L(y', x) is such that

x E (u, v) where [u, v] c L(y', x) n K. Then -y' E N and

L(Y', x) =L(y, x). E (u, v) and [IL, v] : L(2 , x) n K.

Thus, if x has the above property, so does L. If L is

interior to L n K then, by the symmetry of Px with respect to

X 2 is interior to L n (x - K) and hence interior to L n P.

If y E X, y E Ny and if there exists a line L with L interior

to L n Px and with L n Ny [Px ] is dense in X and x is a

QI-point.

Conversely, let x be any QI-point of K. Assume that for

some y E X there exists a neighborhood N such that any line L

through L with L n N d ' does not have x interior to L n K.

By symmetry we have L n Px = (L} for all such lines L. Since

x E Kq there must exist a point z E N with z E [PxJ. By

Lemma 3.4, z lies on a line L' through x such that L' n
contains 1 as an interior point of the segment. This contra-

2

diction completes the proof.
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3.13 Theorem. If K is closed and X is of the second

category then x E Kq, x 3t K° imply X-'-[P x ] is dense in X.

Proof: Suppose XlI[P x ] is not dense in X. Then there

exists a y E X and an open set N such that y E N c [Px].

This implies, that [Px] = X and hence, by Theorem 3.7 (b),

x E K° , a contradiction. Thus, X -,-[P x] is dense in X and

[Px  and X-..P.4Px  are complementary dense subsets of X.

3.14 Theorem. (a) Kq is a convex subset of K.

(b) Kq + K c Kq.

(c) Kq = U (x + K : x E Kq).

(d) Kq U (e) is a convex cone.

(e) K - K = X and Kq ' imply

Kq - K = X.q qK
Proof: If Kq =, (a) holds trivially. Suppose

x, y E Kq and let z = ax + (1 - a)y, O<a < 1. It may be

assumed without loss of generality that a ! Since

z - ax = (1 - a)y and therefore z - ax = u E K we have

1ax = z - u E z - K and, since -K = K it follows that

x E1 z -K. Also setting v = ax + (-a)y -ay = ax + (1-2a)ya
then a > 0, 1 - 2a k 0 and, since x, y E K so is v E K. Thus,

ay = z - v E z - K and y E -z -K. This implies that x and y

belong to K n (-z - K) = Pz/a" By Lemma 3.2 (b), x E Pz/a

implies Px c Pz/a and since [Px ] is dense in X, so is [Pz/a].

By Lemma 3.2 (a), P 1P so [P1 a[ Pz] = a[P is
z/a = V z T sK[soea[ da) is

dense in X and z E Kq. Thus Kq is convex and (a) is verified.
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If y E x + K then Px c Py, by Lemma 3.2, so if [Px] is

dense in X so is [P y. Thus, (b) holds.

(c) follows immediately from (b).

To prove (d) we note that, from (b) it follows trivially

that Kq + Kq c K . That aKq c Kq for a > 0 follows from

Lemma 3.2 (a). Thus K U e] is a convex cone.

Finally, suppose K - K = X. Then, for any x E X, x = y-z

with y, z E K. Let u E K . Then, by part (b), y + u, z + u E

Kq so x = (y + u) - (z + u) E Kq - Kq, and (e) is proved.

3.15 Theorem. If [u, v] c K and (u, v) n Kq / 0 then

(u, v) c Kq.

Proof: Suppose z E (u, v) n Kq and let x be any point

in (u, v). There exists a y E (u, v) and a real number

a, 0 < a < 1 such that x = az + (i - a)y. az = x - (l-a)y E

x - K so z E (Ix - K) n K = Px! . By Lemma 3.2 (b), Pz c Px/a

and, since [Pz ] is dense in X so is [Px/a and, hence, [Px]

is dense in X. Thus x E Kq. Since x was any point in

(u, v), (u, v) c Kq.

3.16 Theorem. If Kq 4.0 then K a Kq

Proof: Suppose that Kq / 0 but that K K . Then there

exists an x E K such that x t 1q and, hence, there exists an

open set N containing x such that N n K = p. Let y be any
q

element in Kq and let U = N - x. U is an open set containing

e and there is an open set V such that 8 E V - U with V
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absorbing (i.e. V is such that to each z E X corresponds an

e > 0 with Az E V if 0 < I A I C 9). In particular, if

v = y - x there exists a Ao, 0 < go < 1 such that Pov =

Poy - ROx E V c U so goy - $ox E N - x or Ooy + (1 - go)x E N.

Let z = 0y + (l - go)x. Then z E N n (x, y). Since

N n K = 0, z g K . Consider the rays R(8, x) and R(e, z).

Now R(O, x) + y = (y + Xx : X : 0) and R(8, z) = X( oy +

(1 - 90 )x) : X k 01. It is easily seen that the element

u = y + (1 o)x = .o(Aoy + (1 - go)x) is the point of

intersection of the rays R(e, x) + y and R(8, z).

X) R(e x) + y

R(8, z)

0z

Clearly u -y = - ox E K so y E K nu -K) = Pu. By

Lemma 3.2 (b), Py c Pu so, since y E Kq, [Pu ] is dense in X

and u E Kq. But z = gou and go > 0 so, by Theorem 3.14 (d),

z E Kq. This contradiction completes the proof.

3.17 Corollary. If K is closed and K q ' then

K=Kq.
K = Kthe qJ)CK

3.18 Theorem. If x E Kq and y E Kb then q, y) c Kq

Proof: Suppose z E (x, y). Then z = Ax + (1 - A)y with

0 < A < 1. As in the proof of Theorem 3.16, the point

u =X + (I ly=(Ax + (1 - A)y) is common to R(ey) + x
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and R(e, z) and it follows as before, that z E K .
q

3.19 Theorem. Let x E Kq x L- K° . If y ' [Px] and

z E [P x and if H is the two dimensional variety containing
x

T, y and z, then either H n Px = R(e, or H n P is a
x2' x

closed segment on L(z, 2) with midpoint xL
wihmdon 2*

Proof; Since y X [PxI L(y, 2L) and L(z, 2L) intersect at

but are not coincident, hence determine the two dimensional

variety H. Either e E H (in which case H is a subspace and

clearly contains R(e, 1)) or e g H and L(z, 2) n P contains

a closed segment s with midpoint 1 (by Lemma 3.4). Thus if

e E H, R(e, 2) c H n Px and if e % H, s a H n Px. Suppose,

in the first. case that e E H, yet that there exists a

u E H n P such that u g R(e, 2-). Let x I and x2 be distinct

points on R(e, 2) and consider the convex hull A of the set

(u, x, x2 ]. (That is A is the smallest convex set containing

these three points.) A has an interior relative to H since

if w E A and w is not on any of the three segments [xl, x2 3,

[u, x I, [u, x2 ], there exists a convex open set N containing

w and not intersecting any of the three segments, so

N n H c A. Then y (as an element of H) is contained in

[A] C EPx ] contrary to the assumption. Thus, H n P c R(e, )

and, therefore, H n Px = R(e, L). The verification that

H fl Px = s when e H is achieved by replacing R(e, 1) by s

throughout the preceding argument.

3.20 Definition. The ray R(e, x) is an extreme ray of
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the cone K if, whenever [u, vJ C K and (u, v) n R(e, x) /

it necessarily follows that [u, v] c R(e, x).

3.21 Lemma. If R(e, x) is an extreme ray of K then

(a) Px = [e, X]

(b) [Px ] = L(e, x)

Proof: Certainly [e, x] C K n (x - K) = Px" Let y be

any element of Px' y / e. Then x = 1(2y) + 1(2(x - y)) and

since 2y and 2(x - y) belong to K, x is the midpoint of a

segment in K. Because R(e, x) is an extreme ray, 2y E R(e, x)

and 2(x - y) E R(e, x). Thus, y E R(G, x) and x - y E R(e, x).

It follows that y E R(8, x) n (x - R(e, x)). Since R(e, x) =

fz : z = px, p k O and x - R(e, x) = (z : z = x - Ax =

(1 - A)x, A k 0] = (z : z = ax, a 9 1), R(e, x) n (x - R(e,x)) =

(z z = Yx, 0 s y s ] = [e, x]. Since y was any element of

Px Px c [e8, x] and (a) is true. (b) follows trivially from

(a) since the linear extension of the segment [e, x] is the

line L(e, x).

3.22 Theorem. If x E Kq and R(e, x) is an extreme ray

of K then the line L(e, x) is dense in X.

Proof: Follows immediately from Lemma 3.21 (b).

3.23 An example to show that the situation described in

Theorem 3.22 can occur. Let X = R2 with the topology having

as a base the family of all open vertical strips of the form

((xl, x2 ) : a < x1 < ]. It is easy to verify that in this
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topology R is locally convex linear topological space with

pseudo-norm p(xl, x2 ) = j x I determining its topology but

is not a normable space since it fails to satisfy the T1-

separation axiom. It is also easy to see that the x1 -axis is

dense in the space. Let K denote the set of all points

(xl, x2 ) with x, k 0 and x2 k 0. The non-negative x1 -axis is

an extreme ray of K and the point (1, 0) on this extreme ray

is a QI-point of K. We note that the cone K here is not

closed. For further details see the discussion of this

example in [3].

3.24 Theorem. Suppose K is closed and K U (-K) / X.

Then, if R(e, x) is an extreme ray of K, R(e, x) n Kq = -i.e.

R(e, x) c Kb.

Proof: By Lemma 3.21 (b), [Px ] = L(e, x) -

R(e, x) U R(e, - x) c K U (-K). If x E Kq, by Theorem 3.22.,

X = L(e, x) c K U (-K) = K U (-K) = K U (-K). Since obviously

K U (-K) c X we have that K U (-K) = X contradicting our

assumption.

The majority of the preceding results demonstrate

properties which quasi-interior points have in common with

interior points. The following examples are included to

indicate some of the differences between these concepts.

3.25 An example of a cone K such that 
K 0

Let E be any uncountable set. Let S denote the c-ring of all
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subsets of E. For each finite set F in E let m(F) denote the

number of points in F and for any subset A of E with more

than a finite number of points let m(A) = C. (E, S, m) is a

measure space. Let X be the space L(E, S, m) of all measur-

able functions f on E such that f I is integrable over E.

Assign to each f in X the norm f I EI f I. X is a non-

separable Banach space. Let K be the class of all functions

f in X such that f(x) m 0 for all x in E. K is a closed cone

in X such that K - K = X, K n (-K) = (e), K° = Kq = . 'The

verifications of these statements together with other

properties of K and X may be found in [3].

For another example see [3, example 8.2].

3.26 An example of a cone K such that K°  and K .

Let X be the space L(E, M, m) where E is a set, M is the

family of m-measurable subsets of E, and with m(E) < C. It

was shown in [2] that if X is not finite dimensional then the

cone K = (f : f E X, f(t) ; 0 for t E E) has no interior. It

is easily seen that the function f defined by f(t) = 1 for

all t E E is a QI-point of K since the simple functions are
=n

dense in L and since if g(t) = i= E (t) is any simple

function in L (where fEl} is any finite family of disjoint

sets in M and XE is the characteristic function of Ei) then

if Y = max i a and h(t) = 'g(t), f E h + K so h E EPf]

and, hence, g E [Pf]. Since all simple functions thus belong

to [Pf], [Pf] is dense in X and f E Kq.
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Note that Example 3.8 also shows a cone K with K =

yet K / p. For still another example see [3, example 8.51.

3.27 An example of a line through a QI-point x of a

cone K which intersects K only at x. Let X = C0 , the spa-e

of all real sequences converging to 0. If x = E X then

x = I I. Let K = (x = : x E X, k 0 for

all i3. Define x = (1, -, , ... , 2 n, ... 3and y

- 1 1, (-l)n ... It is easily seen that x E K,
2' - -3' n

and y % K. Consider the line L(x, y). For any a > 0

ay + ( a)x =(_)n a + (1 - a) 1-1. For n odd,
n 2n

-a +1 a + 1 -an+n Choosing nso that a > n
n 2 n n 2 n n2n 2n

it follows that -2na + n < 0. Thus, for any a > 0,

ay + (l - a)x X Kq and the only point of the ray R(x, y) in

Kq is x itself. Similarly, considering even n with a < 0,

no point ay + (1 - a)x lies in Kq. Thus L(x, y) intersects

Kq only at x.

3.28 An example of a line L through a point y K and a

point x E K such that the first point of K on L from. y

through x is x itself and LR(x, y) c K. As in example

3.27, let X = co and K be the positive cone. Kq is the set

of elements with strictly positive coordinates. Let

x = ( l, -1 1~.. ...), y = ' f-i,21 3' ". n'
i__ i_ (1 _l2-9 41 ... I 2n-1 y : - 2 -31

Consider ax + (1 - a)y = (a - , = na - (i a)2n
2n n n2 n

If, for some a with a < 1, ax + (1 - a)y E Kq then
n 2n

na - (1 - a)2n > 0 for all n. This implies that -> --a n
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2nfor all n. But -can be made arbitrarily large. Thus, the

ray R(x, y) contains no points of Kq other than x. If a > 1,

ax + (1 - a )y = (na + (a - 1)2 ) and each coordinate is
n2n

positive. Thus LoyR(x, y) lies entirely in Kq,

3.29 An example of a line L which intersects K in a

segment one end of which is a QI-point and the other a B-

point. Let X, K and x be as in examples 3.27 and 3.28. Let

SP ...,4n .). Then ax + (1 - a)y

(a + (l a) n ,. If a = -1,

4an + (1 - a)2n -4n + 2 n+l = 2(2n - 2n) = 0 if n= 1, 2 and

> 0 if n > 2. Thus, the line L(x, y) contains the QB-point

-x + 2y. If -1 < a 9 l, 4an + (l - a)2n > 0 for all n. Thus

the segment (-x + 2y, x] c Kq. If a > 1 then, since n_q* 2n

0, 4:in + (l - a) < 0 for a sufficiently large n hence for'large

enough n, +.i . < 0 and ax + (1 - a)y J K. Thus,

L(x, y) nfK (- + 2y, x]. Finally, if a < -1. then for

n =,7~+Kx = -T~- < 0so ax + (1-a)y gK. Thus,

L(x, y) n K = [-x + 2y, x].

3.30 An example of a line L which intersects a cone K

Jn a segment with endpoints both of which are QI-points. Let

X = L[O, 1), the Banach space of all Lebesque measurable

functions absolutely integrable over the interval C0, 1].

Let K = (f : f E X, f(t) a 0 a.e.]. Then Kq ( (f • f E X3

f(t) > 0 a.e.]. Let flit) = t1/2 and f2 (t) = (1 -t) 1 / 2

Certainly flP f2 E K q. Consider L(fl, f2 ) =
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afl + (1 - a)f2 : - < a < + ]" Clearly [fl, f,] c K. If

a 9 [0, 1] then af1 + (1 - a)f2 9 K. To see this note that

if, for example, a < 0 then g(t) = af-(t) + (1 - a)f2(t) =

at1/2 + (1 - a)(1 - t)1/2 < 0 whenever ((1 - t)/t)1 / >

(a - 1)/a -i.e. for all t < a 2/(2a - 2a + 1). Thus

L(fl, f 2 ) n K [f, f 2 ].

Only cones with vertex at 8 have been considered. S4n-e

any convex cone with vertex u in X is the translate u + K of

a convex cone K with vertex e, a natural extension to any

convex cone of the quasi-interior point concept can be .ade.

3.31 Definition. If K is a convex cone (with vertex

e) define the set (y + K)q to be the set of all pcints.

x E y + K such that [(y + K) n (x - K)] is dense in X.

(y + K)q is called the quasi-interior of y + K and each

x E (y + K)q is a QI-point of y + K. ,Note that this

definition contains definition 3.1 as the special case when

y = e.)

3.32 Theorem. (y + K)q = y + Kq.

Proof: Let z be any element in y + Kq. Then z =

y + u, u = z - y E K . Thus [P.] is dense in X. However,

(y + K) n (z - K) = (y + K) n (y + u - K) = y + (K n (u - K)) =

y + Pu and, since [Pu3 is dense in X, so is y + Pu. Thus

[(y L K) n (z - K)] is dense in X, z E (y + K) and

y + Kq c (y + K) . To prove the inclusion in the opposite
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direction let z be any element of (y+ K) Then

[(y + K) n (z - K)] is dense in X. If u = z - y then Pu=

K n (x - K) = -y + ((y + K) n (z - K)) and [P u is dense in

X. Thus u =z - y E Kq, z E y + Kq and (y + K)q a y + Kq.

4. Support and separation properties.

A hyperplane in X is a maximal proper closed linear sub-

space. It is easily shown that a necessary and sufficient

condition that a set H be a hyperplane is that it be the null

space of a non-trivial continuous linear functional on X.

The hyperplane H = f- [0] is said to separate two sets A and

B if x E A implies f(x) k 0 while x E B implies f(x,) ! 0.

H = f-1 [0] strictly separates A and B if f(x) > 0 for all

x E A while f(x) < 0 for all x E B. A hyperplane H = f- [0)

supports a set A if f(x) a 0 (or f(x) s 0) for all x E A and

H n A V. x E A is called a support point of A if there is

a hyperplane H containing x and supporting A.

The well known Hahn-Banach theorem in its geometric form

(c.f. [1) states that if A is a non-empty open convex set

and M is a variety not meeting A then there exists a hyper-

plane H containing M and not meeting A. In particular, if K

is-a convex cone with K°  0 then every point x E K,-%-K ° is a

support point of K. Furthermore, if H supports K then

H n K° = g, and, consequently, every interior point of K is a

non-support point of K. The fact that if K ' then every
q

point of K qis a non-support point of K is demonstrated in
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Theorem 4.2 below. However, as an example on page 136 of [10]

shows, there can be points in Kb which are also non-support

points. Some rather restrictive conditions on X which are

sufficient to insure that the set of all non-support points

of K coincide with Kq are also given in [10]. The results

beginning with Theorum 4.4 are concerned with the problem of

supporting a cone with non-void quasi-interior by a proper

linear subspace, not necessarily a hyperplane, but maximal in

a certain well-defined sense.

4.1 Theorem. Let K and K' be cones with non-void

quasi-interiors such that Kq n K'q = 0. Then if H is a hyper-

plane separating K and K', H strictly separates Kq and K'q q "

Proof: Suppose H = f-1 [0] separates K and K'. Suppose

x E H n K. Then, f(x) = 0. If y is any element of PxO x - y

is also an element of Px and f(x - y) = -f(y). If y g H then

f(y) 7 0 and f(x - y), f(y) are opposite in sign. Both x - y

and y belong to K and, because f(x - y), f(y) are opposite in

sign, lie on opposite sides of H contradicting that H separates

K and K'. Thus x E H n K implies Px c H. But then [Px ] c H

so, since H is a hyperplane, [Px] is not dense in X. Thus

H n Kq = 0 and assuming that f(x) k 0 for all x E K, f(x) > 0

for all x E Kq. Similarly f(x) < 0 for all x E K'q and H

strictly separates Kq and K'q.

4.2 Theorem. If H is a supporting hyperplane for K

then H n Kq = -i.e. each QI-point is a non-support point.



26

Proof: Let H be a supporting hyperplane for K. Then

H = f-l[o] and f(x) > 0 for all x E K. Certainly e E H. If

H n K = fe) certainly H n Kq = 0. If x E H n K, x X 9

then, by an argument analagous to that used in Theorem 4.1,

Px c H which implies that x g Kq. Thus H n Kq = 0.

4.3 Theorem. Suppose Kq / 0 and C is a convex set

with non-void interior C0 such that C 0  Kq = 0. There exists

a hyperplane H separating C and K and strictly separating C
°

and Kq'

Proof: Since C and K are disjoint convex sets, by
q

[6, (8.8)] there exist complementary convex subsets A1 and

A2 ; A 1  A2 = 9, A1 U A2 = X with C° c A, and Kq c A2 . Since

C0 is open in X it follows from [6, (9.1)] that l n 12 is a

hyperplane H separating C° and K . Furthermore, this same

theorem shows that C0 n H = 0 and, by the proof of theorem

4.2, Kq n H = 0. Thus H strictly separates C° and Kq. C n K

is a convex set. Assert that C n K c H. If C n K = 0 this

is trivial. If C n K X I there exists an x E C n K. Assume

without loss of generality that H = -l[0] with f(Kq) > O.

First assume that f(x) > 0 -i.e. x % H and x is on the aame

side of H as K q* Since H is closed there is a convex neigh-

borhood N about x such that f(N) > 0. Since x E C, N n C0  g.

But this implies that C0 contains points on the same side of

H as K contrary to the fact that H strictly separates C
0 and

q

K q* Secondly assume that y E c fl K and f(y) < 0 -i.e. y and
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C0 lie on the same side of H. Again there is a convex

neighborhood N of y such that f(N) < O By theorem 3.16,

since Kq V, , Kq is dense in K so, since y E K there exist

points of Kq in N contrary to the strict separation cf C and

Kq. Thus, C n K c H and H separates C and K.

4.4 Theorem. Suppose K n (-K) = (e), Kq # 9 and

x0 E Kb, xo  e. Then there exists a subset H of X maxial

with respect to the properties:

(i) H is a proper linear subspace of X,

(ii) x0 E H,

(iii) H n Kq =

Proof: Note first that K does not consist of a single

ray from e for if it did we would have K = fXx o : X C-3.

Since Kq 4 q( there exists a y E Kq, y ? e hence y = axo a > 0.

But then x° -
1y E K contrary to the assumption that
a q

x o E Kb = K-'-'K Suppose K = R(e, xo ) U R(e, _x0  = x

Then -K = L(O, x0 ) and K n (-K) = K contrary to the assumption

that K n (-K) = (e}. Thus, K contains at least two independent

rays from e and X contains at least two distinct lines through

6 -i.e. X has dimension at least 2. Consider the line

L(e, xo) and the ray R(6, xo). Clearly L(e, xo)nK = R(e, xo)

and L(e, xo) n Kq =(R(e, Xo) n K q) U (R(e, -x0 ) n Kq) = 0.

Thus L(6, x0 ) is a proper linear subspace of X containing xo
with L(e, x) n K = . That is L(e, xo) satisfies (i), (ii)

and (iii), and the familylof all subsets of X satisfying
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(i), (ii) and (ii!) is non-void. L -J e partially ordered

by inclusion and let ;= (H.1 be a rnrmxi-.al linearly ordered

subfamily of A. Let H = U H Clearly H satisfies (i), ('i)

and (iii) and is maximal with respet to satisfying these

properties.

4.5 Theorem. Let K and H be as in Theorem 4.4.

Define S1 = H 4 Kq and S2 = H -Kq' Then

(I) H n s1  H n s,2 s n s,

(I) H U SI U S2 = X,

(III) K H U 3

(IV) Kq S

(V) S and S 2 are symmetric with respect to H In

the sense that if x E SI and y E H then there exists an

x E S2 with y = I + Ix 2 .

Proof: If y E H n S1 = H n (H + K) then y = u + z E H

with z E Kq so z = y - u E Kq n H contradicting Theorem 4.4

(iii). Thus H S1 =. If y E H n S.- = H n (H - K) thenL q

y = u - z E H WitL z E Kq so z u- y E Kq n H, again con-

tradicting Theorem 4.4 (iii). Thus H n s2 = . Suppose

y E S1 n S 2 . Since y E S 1 = H + Kq, y =u + z where u E H,

z E Kq and since y E S2 =H - Kq,' y= v -w where v E H,

w E K . Thus u + z = v - w so u = v - (w + z). But v E H

and w, z E Kq imply u E H - Kq = S2 . Th3 u E H n S 2 contra-

dicting that H 2 = p. Thus (I) has been proved.

Suppose, contrary to (II) that there exists a y E X such
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that y ' H U S1 U S2  Let H' = H + Ry = (u + ay : u E H, a E R].

Then H' is a linear subspace of X properly containing H and,

because H is maximal with respect to (i), (ii) and (iii) of

Theorem 4.4, H' n Kq / . Let v E H' n K . Then v = ay + w
q~q*

where a ;'0 and w E H. If a > 0 let v' = -v = y + 1w. Since

v E Kq so is v' E K . Let z = -- w. Then z E H and y=

z + v' E H + Kq =S 1 contrary to the assumption. If a < 0

let v' = (-')v = -y + (-I)w. Then, since v E Kq, v' E K

Let z (-I)w. Then z E H and y = z - v' E H - K = S

another contradiction. Thus (II) holds.

If K 9 H U S1 then there exists a z E K n s 2 . Since

z E S2, z = u - v where u E H and v E K . But then u =

z + v E K + Kq c Kq (c.f. Theorem 3.14 (b)) contradicting

that H n Kq = 0. This proves (III).

(IV) is obvious since Kq = e + Kq c H + Kq = S I .

Let y be any element of H and let x1 be any element of

SI . Then x1  u + v where u E H and v E Kq. Define x2 -

2y - x1 = 2y - (u + v) = (2y - u) - v E H - Kq = S2 . Clearly

Vl + x2 ) = y so (V) holds and the theorem is proved.

4.6 Theorem. Let K, H and x0 be as in Theorem 4.4.

If u E H and Pu = K n (u - K) then Pu c H.

Proof: Suppose, contrary to the desired conclusion,

that there exists a point z E Pu-,/H. Then, if H' = H + Rz,

the maximality of H relative to (i), (ii) and (iii) of

Theorem 4.4 implies that H' n K q p. Let v E H' nl K . Then
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* = az + w where w E H, a E R and a / 0 (since v g H). Since

v and z belong to K (v E Kq c K and z E Pu c K) we have that

the segment [v, z] r: K. If v' = Ov + (1 - A)z with 0 < A r 1

and v" = v' = v + (then v = v" - ( E K n (v"-K)=

Pv" so Pv C Pv" and v" E Kq* But then v' = Av" E Kq and

[v, z) C Kq. Since Pu is symmetric about U, z E P implies

u - z E Pu" Also u - z 9 H since u E H and z g H. Thus

u - z E Pu, H. Let H" = ft + a(u - z) : t E H and a E Rj.

If w = t + a(u - z) E H" then w = (t + au) + (-a)z E H + Rz =

H' and H" c H'. If w E H' then w = u + az = (I + a)u +

(-a)(u - z) E H" so H' c H" and H' = H". Thus, v E Kq n H",

v 9 H so v = a'(u - z) +'w' with w' E H and a' / 0 in R.

Since u - z, v E K so is [u - z, v] c K. If v' = A(u - z) +

(1 - A)v where 0 r A < 1 then v" A-iIv' = 1 _--(u - z) + v

and v = v" 8 1 (u - z) E K n (v" - K) = Pv"" Thus v" and

hence v' belong to Kq and (u - z, v] c K . We know that

v = az + w where w E H and a E R with a XO. Suppose first

that a > 0. Then since u, w E H, the point x = ( )w + (a)u

belongs to H. Also x (az + w) + a )(u _ z)

- + (a - z) E (u - z, v)=K This contradicts
1 + a ( + -)( (uqa

that H n Kq = 0. The theorem is proved.

4.7 Theorem. Let K, H, S1 and S2 be as given in

Theorem 4.5.

(a) If X > 0 then XS 1 C S1 and XS2 C $2.

(b) SI + SI C S ,9 S2 + S2 C S2 '
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(c) S1 U (e) and S2 U fe] are convex cones.

(d) H U S1 and H U S2 are convex cones; S1 U S2 is

not convex.

(e) -S2 = S1 ,

(f) H + SI C S1, H + S2 C S2 .

(g) H - 1 C S2 , H - 2 C S 1 .

(h) S2 - S1 c S2 , SI - S2 C SI.

Proof:

(a) If x E S1 then x = u + w where u E H and w E Kq*

Then x Xu + Xw. Clearly Xu E H and since for X > 0,

XK C K Xv" E Kq. Thus X > 0 implies x E H + Kq = S An

analagous argument verifies that XS2 c S2 if X > 0.

(b) If x, y E S1 then x = u + w and y = s + t where

u, s E H and w, t E K . Clearly x - y = (u + s) + (t + w) E

H + Kq = S1, Similarly for S2 .

(c) This follows immediately from (a) and (b).

(d) Let x E H U S Il Then x E H or x E S I. !:.

X a 0 and x E H, Xx E H. If x E S1 and X > 0 then Xx E S I .

If x E S. and X= 0, Xx = e E H. Ths, x E H U S I and X 2 C

imply Xx E H U SI. If x, y E H then x + y E H. If x, y E S i

then x + y E SI  If x E H and y E S then y = u + v where

u E H and v E Kq so x + y = x + (u + v) = (x + u) + v E S

In any case, if x, y E H U SI then x + y E H U Sl then

x + y E H U SI. Thus, H U SI is a convex cone. Similarly

for H U S2 . To prove that S 1 S 2 is not convex we need only

exhibit two points u, v E S 1 S2 such that [u, v] n H'f 4
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Let u E S1 and x E H. Then v = 2x - u E S2 and x E (u,v) n H.

(e) Suppose x E -S2 . Then -x E S2 and -x = u - v

where u E H and V E Kq and x = -u + v E H + Kq = SI . Thus

-S2 C SI . Now suppose x E S1 . Then x = u + v with u E H and

v E Kq so -x = (-u) - v E H - Kq = S2 and x E -S 2 . Thus

SI c -S2 and the equality holds.

(f) If x = u + v where u E H and v E S1 then

v = u' + v' where u' E H and v' E Kq and, x = u + (u' + v')

(u + u') + v' E H + Kq = SI. Thus, H + SI C S I . Similarly

H + S2 C S2 .

(g) This follows trivially from (e) and (f).

(h) This follows trivially from (b) and (f).

4.8 Theorem. Let K, H, S 1 and S2 be as given in

Theorem 4.5. If y E Kq and H1 = H + Ry define H1

fu + ay : u E H, a > 0) and Hi = fu + ay : u E H, a < 0].

Then H = HI U H U H, H n HI = H n = HI H = s 1 I =

H1 , and H1 f S2 = H1.

Proof: These statements follow immediately from the

definitions and the fact that XKq c Kq if X > 0.

4.9 Theorem. Let K, H, S1 and S2 be as given in

Theorem 4.5. Suppose x E Sl, y E S2 and L(x, y) =

(ax + (1 - a)y : a' E R) is the line through x and y. If

a s 0, ax + (1 - a)y E S2 and if a k 1, ax + (I - a)y E S1.

In particular, if x E S1 and [y, x) c S2 then L(x, y) n S1 =

fax + (1- a)y : a a 1], L(x, y) n s 2 = Eax + (1- a)y : a <1i,
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hence L(x, y) a S1 U S2 and L(x, y) n H =

Proof: Let z = ax + (1 - a)y where a < 0. Since

x = u + v and y u' - v' where u, u' E H and v, vI E Kq,

z = a(u + v) + (1 - a)(u' - v) au + (1 - a)u + av - (1-a)v.

Since a < 0, 1 - a > 0 and -(l - a) < 0. Thus av E -Kq and

-(1 - a)v' E -Kq so av - (1 - a)v: E -Kq and z E H -Kq = S2 '

Let z = ax + (l - a)y where a > 1. Then z = a(u + v) +

(1 - a)(u' - v') - au + (i - a)u' + av - (1 a)v'. Since

a > 1, 1 - a < 0 so -(l - a) > 0 and av, -(l - a)v' E Kq*

Thus, av - (1 - a)v' E Kq and z E H + Kq =S I

x ESI1

E S2

4.10 Theorem. Let K, H, S1 and S2 be as in Theorem

4.5. H is dense in X if and only if S1 U S2 has a void

interior.

Proof: By Theorem 4.5 (I, II), S1 U S2 = X',H. Thus,

x E H if and only if x g (S1 U $2) ° .

5. A Conjecture.

Throughout this section let K, H, xo , S1 and S2 be as

given in Theorems 4.4 and 4.5. The following statement was

given by Fullerton. Because, to this date, the writer has

not managed either to prove its validity or to find a
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counter-example, it will be labeled here as:

5.1 Conjecture. Either H is a hyperplane or H, S1 and

S2 are dense in X.

Fullerton left the following sketch of a "proof."

Suppose x E X/-'H. Let H1 = (u + ax : u E H, a E R] = H + Rx.

Then H1 is necessarily dense in X. If H is closed, clearly

H1 is closed, and being dense in X, H1 = X. Thus H is a

closed linear subspace of X of deficiency one and is thus a

hyperplane. Suppose H is not dense in X. Then H is a proper

linear subspace of X and is therefore contained in a hyper-

plane M. If H is properly contained in M, let x E M"'-'H.

Then H1 c M and cannot be dense in X contrary to the under-

lined statement above. Thus H = M and H is closed.

This "proof" is certainly valid if the underlined state-

ment is true. It is the validity of the underlined statement

about which there is some question.

In keeping with the writer's philosophy concerning

technical reports as outlined in the introduction, the

remainder of this section is devoted to the several attempts

made, so far unsuccessfully, to prove the conjecture.

Certainly little, if any, of the material to follow will

appear in the paper which will evolve from this report.

5.2 Lemma. If x E Xe-..H and H1 = H + Rx then

H1 n K . If v E H Kq then H H + Rv.
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Proof: Either H1 = X, in which case, trivially,

H1 n Kq / , or H1 is a proper linear subspace of X. Since

H1 properly contains H and since H is raxirmal wi!th reszect to

(i), (ii) and (iii) of Theorem 4.4, H1 n Kq / . If v E H1

and v ) H (clearly this is the case if v E H1 n Kq since

H n K = 9) we have v = u + ax wi.th a / 0 for some u E H.
1

Then x = -(v - u) so, if y E Hl , y = u! + a'x = UI +

al v- u) = (u' - 2-!U) + E H + Rv. Conversely, if
a a a

z = u' + Av E H + Rv then z = u' + P(u + ax) =

(u' + Au) + Pax E H + Rx = H1 . Thus H1 = H + Rv.

5.3 Lemma. If v E H1 n Kq and s E Pv then either

s E H1 or there exists a y E Kq such that s + y E HI.

Proof: If s E Pv then s = v - z where s, z E K. Now

since K c S1 = H + i1q, z = u + y where u EH and y E K . Thus

s = v - (u + y) so s + y = -u + v E H + Rv = H1 .

5.4 Assumption. If v E H1 n Kq then Pv c HI.

5.5 Proof of Conjecture 5.1 assuming 5.4. If v c H1

then [Pv ] c HI. Since v E Kq, [PvI is dense in X hence H1 is

dense in X. The underlined statement in the paragraph

following 5.1 is thus verified and the conjecture is valid.

Thus, if 5.4 were valid the conjecture would be proved.

5.5 Lemma. If Kq c H1 then 5.4 lds.

Proof: By 5.3, s E Pv implies s E H1 or s + y E H1 for
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some y E K . If Kq c H1 then y = u + av with u E H, a E R

and s + y E H1 implies s + y = s + (u + av) = u' + a'v. This

implies s = (u' - u) + (a, - a)v E H1 so Pv c H1.

Thus, if it could be verified that Kq C Hl , the conjecture

would be proved.

Another approach to the problem uses the concept of

points linearly accessible from a set. According to Klee [6],

5.6 Definition. A point y E X is linearly accessible

from a set A c X if (y, x] c A for some x E A, x J y. The

union of A with the set of all points linearly accessible

from A will be denoted by lin A. A subset B c X is called

ubiquitous if lin B = X.

The following results are to be found in [6] and are

numbered as they are there.

[6, (8.4)] If C is a convex set with non-empty interior and

C is ubiquitous then C = X.

[6, (8.9)] If C and D are complementary convex subsets of X

and M = lin C n lin D then either M is a maximal variety or

M = X.

[6, (7.1)] Each maximal variety is either closed or dense.

Now if we could show that H = lin C n lin D for comple-
mentary convex sets C and D (for example C = H U S1, D - S2)



37

then by [6, (8.9)] H is a maximal variety so by [6, (7.1)],

H is either closed or dense.

5.7 Lemma. H c (lin SI) n (lin S2).

Proof: Let u be any element of H. Let v1 be any

element of SI. Certainly vI  u. Define v2 = 2u - vI . Then

v2 E S2 and v2  u. Consider [v2, u) = (Xu + (1 - X)v2 : 0

< 1). Clearly [v u) c H + S2  S2 (Theorem 4.7 (f)).

Also [vI, u) = fXu + (1 - X)vI : 0 z k < 1) c H + Sl C S1 .

Thus, u E (lin SI) n (lin-$2).

5.8 Lemma. H U SI clin SI .

Proof: H c lin S1 by Lemma 5.7 and S1 c lin S1 by

definition 5.6.

5.9 Lemma. A c B implies lin A c lin B.

Proof: If x E A and A c B then x E B c lin B. Suppose

x E lin A, x g A. Then there exists a y E A c B such that

[y, x) c A c B so x E lin B.

5.10 Lemma. lin (H U S) c lin S1.

Proof: Suppose p E lin (H U S1 ). If p E H U S1 then,

by Lemma 5.8, p E lin S1 . If p g H U Sl then, because

p E lin (H U SI ) there exists a y E H U SI such that

(p, y] c H U S1. Either y E H or y E S1 since H n S1

Suppose y E H. Let v E (p, y). If v E H the entire line

through v and y is in H because H is a subspace. But this

contradicts that p g H U S1 . Thus, v E Sl, v =
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ay + (1 - c)p, 0 < a < 1. Since v E Sl, v = u + w where

u E H and w E K . Thus, u + w = ay + (l - a)p and (l - a)p =

(u - ay) + w E H + Kq = SI . But XS 1 C SI for X > 0 so, since

> 0, p E S I again contradicting that p 9 H U S I. Thus

y 9 H and, necessarily, y E SI . Thus p E lin SI and

lin (H U S I ) c lin S I .

5.11 Lemma. lin (H U SI) = lin SI .

Proof: Since S1 c H U S I , lin SI c fin (H U Sl) by

Lemma 5.9. The result follows from Lemma 5.10.

5.12 Lemma. Let M = lin SI O lin S2 . Then

(a) HC M

(b) either M = X, M is a hyperplane, or M

is a proper linear subspace dense in X.

Proof: H U S1 is convex (Theorem 4.7 (d)), S2 is convex

(Theorem 4.7 (c)), (H U S1) n S2 = 0 (Theorem 4.5 (I)), and

(H U Sl ) U S2 = X (Theorem 4.5 (II)). Thus H U S1 and S2 are

complementary convex sets. lin S1 = lin (H U S1) by Lemma 5.11.

Thus M = !in (H U Sl )  n S2 is either a maximal variety or

M = X. That H c M is Lemma 5.7. Since H is a linear sub-

space, e E H zo e E M and M is a subspace, hence if M X,

M is a maximal proper linear subspace. By [6, (7.1)], if

M XM is either a hyperplane or M is dense in X.

5.13 Lemma. If M = X (where M = lin S1 l ln $2) then

(a) X is infinite dimensional.
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(b) X = lin S1 = lin S2 = fin (H USI) =

lin (H U $2),

(c) S10 = S20 = (H U SI )o = (H U S2) ° =

Proof: Suppose M = X = lin S I f lin S2 . Then fin S =

X = lin S2 . Since fin (H U SI) = lin S1 and fin (H U S2) =

lin S2 , (b) follows. Thus M = X implies the sets SI, S2,

H U SI and H U S2 are all ubiquitous. S1 is a convex proper

subset of X and is ubiquitous. By a theorem of Klee

[6, (8.1)], this can happen if and only if X is infinite

dimensional so (a) holds. Finally, by [6, (8.4)], since

S1 , S2 3 H U S 1 and H U S2 are ubiquitous and yet proper sub-

sets of X, they must all have void interiors.

5.14 Lemma. If M = X (where M = lin S1 n lin $2) then

H is not a hyperplane.

Proof: Assume H is a hyperplane. Then H is not dense

in X so, by Theorem 4.10,S1 U S2 has a non-void interior.

Because M = X, from Lemma 5.13 (c), S1
0 = S2

0 = 0. This,

together with the fact that S1 and S2 are convex give that

S1 U S2 is polygonally connected. But this implies that

S1 U S2 = X,,-/H is connected -i.e. H does not separate X. By

a theorem of Klee, [7, (2.1)], H is not a hyperplane.

5.15 Lemma. Suppose H / M (where M = lin S1  lin S

Then there exists a line L in X such that L n S1  ,

L n s2 and L n H = (i.e. L c S 1 U $2).

Proof: If H 7 M, since H c M (Lemma 5.12 (a)) there
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exists anx E M, x9H. Since xgHand X=HU S 1 US 2,

x E SI or x E S2 . Assume without loss of generality that

x E SI . Since x E M = lin S 1 n lin S 2, x E S I n lin S2 .

Since x E lin S2 and x g S2 (Sl n S2 = 0) there exists a

y E S2 such that [y, x) c S2* It follows immediately from

Theorem 4.9 that L(x, y) C S I 1 S2 .

5.16 Lemma. If H is dense in X so are S1 and S2 .

Proof: Let x be any element of H. Then

x E H U S1 c lin (H U SI) = Lin S 1 c "91 so H c Sl. Thus,

R= X implies SI = X. Similarly for S2 .

5.i7 Lemma. The following statements are equivalent.

(a) M n Kq = 9 (where M = lin S 1 n lin $2).

(b) Kq n lin S2 =.

(c) S 1 n lin S2 = 9.

Furthermore, if x E S I n lin S2 then x = u + v where u E H

and v E Kq n lin S2 .

Proof: Suppose x E Sl n lin S2* Then, since x E SI ,

x =u + v where u E H and v E K . Since x E lin S2 and

x e S2 there exists a y E S2 such that [y, x) c S2 . Thus,

for any a, 0 ! a < 1, ax + (l - a)y = a(u + v) + (1 - a)y =

ua - va where ua E H and va E Kq. It follows that av +

(i - a)y = (ua - au) - va E S2 and [y, v) c S2 * Thus

v E Kq n lin S2. Then Kq n lin S2 = 0 implies SI n lin S2

Since Kq c Sl , clearly Sl n lin S2 = 0 implies Kq n lin S2 =

and (b) and (c) are equivalent. M n Kq =



41

(lin S 1 n fin S 2 ) n Kq =(Kq n lin S1) nlin S2 so (a) and

(b) are equivalent.

A third possible approach to the problem could make use

of the following Lemma whose proof can be found in [5, P. 19].

5.18 Lemma. A cone P such that P / 9, P / X is a

half-space if and only if it has a non-void directional-

interior, Pd and if the union of the sets P and -Pd is the

entire space. If P is a half-space P n (-P) is a maximal

linear subspace.

In order to make use of Lemma 5.18, set H U S1 = P.

Note that H U S is a convex cone according to Theorem 4.7 (d).~1

We ask the following questions. 1) Is Pd non-empty? 2) Is

S2 = -Pd? If the answers to both 1) and 2) are yes then,

because (H U Sl) U S2 = X we have P = H U S1 is a half-space.

Since -H = H and -S 1 = S2 we have -P = H U S2 so P n (-P)

(H U S1 ) n (H U S2) = H and therefore H is a maximal linear

subspace so is either dense or a hyperplane.

5.19 Lemma. Let P = H U S1 .

(a) Pd cS I

(b) If Kq n lin S2 = then S 1 c Pd"

Proof: If Pd = ' trivially Pd c S I . Thus suppose

Pd 74 9 " Let x be any element of Pd' Then, given any y E X

there exists a z E (x, y) n P such that [x, z] c P. If

yES 2 then y =u -v where u E H and v E K. For some

2 q'
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a, 0 < a < 1, z =y + (1 -a)x. Since Fd c P =H U S 1

either x E H or x E S1 . If x E H then z = a(u -v) + (1-a)x=

(au + (1 - a)x) -av E H - Kq = s2 contrary to the fact that

z E P and P n s2 =(, Thus, x E SI . Since x was any element

of Pd, Pd c S 1 and (a) is proved.

To prove (b) suppose that Kq n lin S2 = 9. Then by

Lemma 5.17, S1 n lin S2 = q. This means that if x E S1 and

y E S2 then Ey, x) 0 S2 . Suppose that x is any element of

S 1 . Let y E X, y / x. If y E P = H U S1 then [y, x] c P

since, by Theorem 4.7 (d), P is convex. Then, clearly, there

exists a z E (x, y) n P such that [x, z] c P. If y P then,

because X = P U S2 1 y E S2 . But [y, x) 9 S2 so there exists

a z E (y, x) with z g S2 hence z E P. Since P is convex and

x, z E P, [x, z] c P. Thus, x E Pd and because x was any

element of S1, S1 CPd

5.20 Corollary. If Kq n lin S2 = ' then H is a

maximal linear subspace (and is therefore either a hyperplane

or dense).

Proof: We saw in Lemma 5.19 that if Kq n lin S2

then Pd = S1 / p" Since S = -S2 (Theorem 4.7 (e) the

remarks preceding Lemma 5.19 give the conclusion here.

5.21 Theorem. A necessary and sufficient condition
that H be maximal linear subspace is that K n lin S

q Tt 2  0.

Proof: The sufficiency was stated in Corollary 5.20.



43

Suppose that H is a maximal linear subspace. Then P H U S

is a half-space and by Lemma 5.18, Pd p and X = P U (-Pd).

By Lemma 5.19, Pd ' S1 so -Pd C -S1 = $2' Since X =

P U (-P) = P U S2 and n = , - = $2 and Pd = SI'

Since Pd S1 if x is any point in S1 and y is any point in

S2 then there exists a z E (y, x) n P such that [z, x] a P.

Thus there exists no point y E S2 such that [y, x) c S2 and,

consequently, S1 n lin S2 = p. By Lemma 5.17, SI n lin S2 =

gf if and only if Kq n lin S2 -6. The theorem is proved.
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